Databac

PLAN GRAND ORAL MATHS / Lucia de Berk : quand les maths mal utilisées condamnent une innocente

Publié le 08/05/2025

Extrait du document

« PLAN GRAND ORAL MATHS / Lucia de Berk : quand les maths mal utilisées condamnent une innocente Introduction : une justice trompée par les maths Peut-on être condamné à vie à cause d’un calcul mal fait ?​ C’est ce qui est arrivé à Lucia de Berk, une infirmière accusée à tort de plusieurs meurtres.

Un chiffre gigantesque – une probabilité de 1 sur 342 millions – a été présenté comme une preuve. Problématique : Comment une erreur dans l’utilisation des probabilités, combinée à des biais cognitifs, a-t-elle pu conduire à une erreur judiciaire aussi grave ? I.

La mauvaise application des probabilités : une erreur d’indépendance 1.

Le calcul présenté au tribunal ●​ Un statisticien a calculé la probabilité que Lucia soit présente à 14 décès comme :​ P=p^14​ avec p = probabilité d’être présente par hasard à un décès.​ ●​ Résultat : une probabilité infime (1 sur 342 millions)​ Ce genre de raisonnement utilise les lois des probabilités composées :​ si les événements sont indépendants, alors : P(A∩B)=P(A)×P(B) 2.

Mais les événements n’étaient pas indépendants ●​ Lucia faisait plus de gardes que la moyenne​ ●​ Elle travaillait dans des services où les décès sont plus fréquents​ ●​ Les décès n’étaient pas tous suspects : certains patients étaient déjà mourants​ Ici, les probabilités ne peuvent pas être multipliées !​ On est face à une erreur de modélisation, car les conditions d’indépendance ne sont pas réunies. Notions mathématiques mobilisées : ●​ Indépendance​ ●​ Probabilités conditionnelles​ ●​ Modélisation​ II.

Une interprétation faussée par des biais statistiques 1.

Biais de sélection ●​ On ne part pas d’un échantillon aléatoire, mais d’un cas particulier observé après coup​ ●​ C’est comme si, dans un grand hôpital, on observait des milliers de soignants, et qu’on retenait celui qui semble "anormal" –.... »

↓↓↓ APERÇU DU DOCUMENT ↓↓↓

Liens utiles